GQCP
Loading...
Searching...
No Matches
Functions
GQCP::EigenproblemSolver Namespace Reference

Functions

template<typename Scalar >
Algorithm< EigenproblemEnvironment< Scalar > > Dense ()
 
IterativeAlgorithm< EigenproblemEnvironment< double > > Davidson (const size_t number_of_requested_eigenpairs=1, const size_t maximum_subspace_dimension=15, const double convergence_threshold=1.0e-08, double correction_threshold=1.0e-12, const size_t maximum_number_of_iterations=128, const double inclusion_threshold=1.0e-03)
 

Function Documentation

◆ Davidson()

IterativeAlgorithm< EigenproblemEnvironment< double > > GQCP::EigenproblemSolver::Davidson ( const size_t  number_of_requested_eigenpairs = 1,
const size_t  maximum_subspace_dimension = 15,
const double  convergence_threshold = 1.0e-08,
double  correction_threshold = 1.0e-12,
const size_t  maximum_number_of_iterations = 128,
const double  inclusion_threshold = 1.0e-03 
)
Parameters
number_of_requested_eigenpairsthe number of solutions the Davidson solver should find
maximum_subspace_dimensionthe maximum dimension of the subspace before collapsing
convergence_thresholdthe threshold that is used in determining the norm on the residuals, which determines convergence
correction_thresholdthe threshold used in solving the (approximated) residue correction equation
maximum_number_of_iterationsthe maximum number of iterations the algorithm may perform
inclusion_thresholdthe threshold on the norm used for determining if a new projected correction vector should be added to the subspace
Returns
an iterative algorithm that can find the lowest n eigenvectors of a matrix using Davidson's algorithm

◆ Dense()

template<typename Scalar >
Algorithm< EigenproblemEnvironment< Scalar > > GQCP::EigenproblemSolver::Dense ( )
Returns
An algorithm that can diagonalize a dense matrix.
Template Parameters
ScalarThe scalar type of matrix elements: real or complex.